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Abstract. In this work, we analyze a power-law inflationary potential enhanced with a step
that can introduce features in the primordial power spectrum. We focus on the computation
of the Spectral Distortions (SD) induced by these features obtained from the inflationary
dynamics. In this scenario, we explore the potential of upcoming experimental missions
like PIXIE to detect the SD of the model within a power of n = 2/3, a power that agrees
with recent tensor-to-scalar ratio constraints. The model offers insights into models with
cosmological phases and different scalar field dynamics. Introducing a step in the inflaton
potential leads to distinct features in the primordial power spectrum, such as oscillations
and localized enhancements/suppressions at specific scales. We analyze the impact of three
primary parameters—β, δ, and ϕstep—on the amplitude and characteristics of the SD. The
ϕstep places the onset of the oscillations in the primordial power spectrum. The β parameter
significantly influences the magnitude of the µ-SD, with its increase leading to larger SD and
vice versa. Similarly, the δ parameter affects the smoothness of the step in the potential,
with larger values resulting in smaller SD. Our findings indicate a distinct parameter space
defined by 0.02 < δ/Mpl ≲ 0.026, 0.10 ≲ β < 0.23, and 7.53 ≲ ϕstep/Mpl ≲ 7.55, which
produces SD potentially detectable by PIXIE. This region also corresponds to the maximum
observed values of µ and y SD, which in special cases are an order of magnitude larger than the
expected for ΛCDM. However, we also identify parameter ranges where µ and y SD may not
be detectable due to the limitations of current observational technology. This comprehensive
analysis of SD provides constraints of step-like inflationary models and their implications on
its dynamics.
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1 Introduction

Cosmological inflation is a proposed mechanism to explain the observed properties of our Uni-
verse that remain challenging within the standard Big Bang model. Specifically, it addresses
the flatness problem that refers to the curvature of the Universe on large scales, and the
horizon problem, which notes the fact that different regions of the Universe that now are not
in casual contact appear to have the same observational properties [1–3]. Inflation proposes a
brief period of rapid, exponential expansion shortly after the Big Bang. This theory predicts
the observed isotropy and homogeneity of the Universe as observed in the cosmic microwave
background radiation (CMB) [4, 5]. Furthermore, inflation accounts for the primordial density
fluctuations that seeded the formation of galaxies and cosmic structures.

The inflationary model is driven by a scalar field known as the inflaton, a homogeneous
scalar field ϕ, with an associated potential V (ϕ). Quantum fluctuations in this inflaton field,
δϕ, expand on cosmological scales and establish the initial condition for the cosmological per-
turbation theory. These fluctuations, combined with the predicted isotropy and homogeneity,
can be empirically verified through CMB observations, large-scale structure surveys, and the
primordial power spectrum [5].

Spectral distortions refer to deviations from the near-perfect blackbody spectrum of the
CMB [6]. Two primary types of CMB spectral distortions dominate: (1) High-energy electrons
interact with CMB photons via inverse Compton scattering, leading to photon thermalization.
As the Universe cools down, the diminishing efficiency of the Compton scattering results in
a shift of the spectra towards lower frequencies, known as µ-type SD [7, 8]. (2) When CMB
photons scatter off high-energy electrons in a hot, ionized gas cloud the photons gain energy
from an inverse Compton scattering process resulting in the y-type SD [9–11]. There is a
third kind of distortion, usually called the r-type, which depicts the transition between the µ
and y SD [12].

These distortions can provide important information about the properties of the distri-
bution of matter in the Universe and, therefore, are subject to the initial conditions of the
clustering of the matter. The energy injection, thermalization, and recombination of primor-
dial particles are the standard phenomena in the early Universe that can produce SD [13–17].
Silk damping, a phenomenon resulting from the diffusion of photons and baryons, leads to the
dissipation of energy storage in the acoustic waves. This process offers an avenue to investigate
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the primordial power spectrum, thereby offering a way to study inflationary dynamics [6, 18–
21]. Spectral distortions offer a complementary avenue at small scales, k ≳ 1Mpc−1, which
are not accessible through CMB anisotropies and polarization, allowing us to access distinct
cosmological information and potentially constraining the nature of the inflationary period
within the detection capabilities of forthcoming experiments that expect to put constraints
to the primordial power spectrum (PPS) at scales of 1 ≲ k/Mpc−1 ≲ O(104) [17, 22].

The canonical inflationary model predicts a gaussian, smooth, and featureless PPS that
can be described with a power–law parametrization, and current reconstructions for the PPS
using CMB data and large-scale structure data statistically agree to these predictions [5, 23–
29, 29, 30, 30–48]. However, departures from a scale-invariant PPS have been observed, but
they should be approached with caution because it remains challenging to distinguish if the
feature underpins inflationary models or if it is a statistical artifact [25–30, 41, 42, 44, 46,
48, 49]. As cosmological data continues to refine, the PPS offers observational constraints on
inflationary models, richer structures in the inflaton potential introduce features in the PPS,
such as oscillations or localized enhancements/suppressions at certain scales. The nature of
the inflaton field determines the scale, amplitude, and form of these features that can even
be located outside of the observable window.

The specific nature of the mechanism driving inflation is still unknown; hence, we aim to
explore more complex inflationary dynamics using the SD. In particular, we aim to forecast the
feasibility of the step-potential inflationary models [50–53] using SD. Incorporating a step in
the inflaton potential allows for the exploration of specific particle physics scenarios and their
implications for the early Universe. For instance, it can simulate a phase transition resulting
from a change in a system symmetry [53]; it can depict non-trivial quantum field theory effects
that may be relevant during inflation [52]; the step can arise from the presence of additional
scalar fields associated with supersymmetric partners, leading to testable predictions [54].
Within string theory, particular compactifications or brane configurations can induce steps or
kinks from geometric or topological properties of the compactified dimensions [55]. Moreover,
introducing a step in the inflaton potential can modify the dynamics, potentially avoiding
the trans-Planckian problem and offering a consistent framework to describe the behavior
of the inflaton field [56, 57]. Thus, examining the step potential can offer a comprehensive
understanding of the underlying particle physics in the early Universe.

Both the µ-type and y-type spectral distortions are very subtle, with amplitudes on the
order of µ = O(10−8) and y = O(10−9), respectively. However, future experiments such as
the Primordial Inflation Explorer (PIXIE) mission [17, 58, 59], the Cosmic Origins Explorer
(COrE) satellite [60], LiteBIRD [61, 62], PICO [63], the Voyage 2050 [64], CMB-S4 [65] or
PRISM [66, 67]; which are expected to improve the sensitivity by several orders of magnitude
to measure both SD. The SD will provide a unique window into the physics of the early
Universe and inflation. Therefore, it is important to forecast interesting scenarios for this
observation.

In this paper, we aim to provide constraints for the inflaton with a chaotic potential with
a step and forecast observational evidence of the spectral distortions in this scenario. We will
delve into the dynamics of inflation and the introduction of the step-potential in Sec.2, then,
in Sec.3 an overview of the theory of SD for primordial small-scale perturbations is presented.
With all these previous elements, in Sec.4, we compute and discuss the observable features of
SD for the studied scenarios. Finally, we summarize our main results in Sec.5.

2 Background Equation of Motion

We assume that inflation is driven by a scalar field called inflaton, ϕ(t), on a flat, isotropic, and
homogeneous background described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
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metric:

ds2 = −dt2 + a(t)2δijdx
idxj , (2.1)

where a is the scale factor. The dynamics of the Universe driven by the inflaton field is given
by the Friedmann and Klein-Gordon (KG) equations

H2 =
ρϕ

3M2
pl

, (2.2)

ϕ̈+ 3Hϕ̇+ V ′
ϕ = 0 , (2.3)

where dots are derivatives with respect to time while primes are the derivatives with respect
to the field, V ′

ϕ = dV (ϕ)/dϕ; H = ȧ/a is the Hubble parameter,Mpl = 1/
√
8πG is the reduced

Planck mass. From the energy momentum-tensor, the energy density ρϕ and pressure Pϕ on
the inflaton is given by ρϕ = ϕ̇2/2 + V (ϕ) and Pϕ = ϕ̇2/2− V (ϕ).

The number of e-fold, N , quantifies the amount of exponential growth that occurs during
inflation, defined as the logarithm of the ratio of the scale factor at the end of inflation (a(te))
and at a time t, a(t),

N ≡ ln
a(te)

a(t)
=

∫ te

t
Hdt . (2.4)

The minimum number of e-folds that solve the horizon and flatness problems is N ≈ 60.
Writing the equation using N as an evolution variable allows the optimization of the com-
putational analysis; therefore, the evolution of the background equations will be written as
a function of e-folds, making use of the relation dN = Hdt [68, 69]. The subscript N on a
function will depict the derivative with respect to the number of e-folds, e.g., for any function
f we have fN = df/dN .

Slow-roll is a requirement for inflation that ensures that the expansion is sustained for a
sufficient time; while slow-rolling, the kinetic energy of the inflaton remains small compared
to its potential energy. One parameter that characterizes slow-roll is ϵ defined as

ϵ = − Ḣ

H2
= −HN

H
(2.5)

Finally, inflation lasts while ϵ < 1.
The KG equation, Eq.(2.3), which describes the dynamics of the inflaton field, is written

in terms of the N as

ϕNN +

(
HN

H
+ 3

)
ϕN +

1

H2

∂V (ϕ)

∂ϕ
= 0 (2.6)

Combining the Friedmann, Eq.(2.2), with the continuity equations, ρ̇ϕ = −3H(ρϕ + Pϕ), we
obtained the equation

Ḣ = − ϕ̇2

2M2
pl

or HN = −
Hϕ2N
2M2

pl

(2.7)

With a given potential, we can solve the coupled background equation Eqs.(2.6) and (2.7)
with the proper initial conditions. The end of inflation can be computed using the slow-roll
parameter ϵ = 1, and the minimum value of e-folds N constrains the initial value of ϕ; the
initial value for ϕN and H are obtained from the same background equation.

2.1 Scalar and tensor perturbations

It is standard practice to compute the equations governing the dynamics of linear perturba-
tions in terms of the curvature perturbation R and tensor perturbation ψ. Defining the mode
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functions for the scalar perturbation u = −zR and vk = aψk for the tensor perturbation, with
z as the Mukhanov variable z ≡ aϕ̇/H. The equation of motion for the Fourier components,
uk and vk, are

u′′k +

(
k2 − z′′

z

)
uk = 0, (2.8a)

v′′k +

(
k2 − a′′

a

)
vk = 0. (2.8b)

The derivatives in the last equations are with respect to conformal time, and each mode
depends on the value of the perturbations wavenumber, k. However, given the exponential
evolution in inflation and to facilitate the numerical solution, it is convenient to solve Eqs.(2.8)
in terms of the number of e-folds, N , the equation for the scalar perturbations are rewritten
as

uNN +

(
1 +

HN

H

)
uN +

(
k2 − z′′

z

)
u

a2H2
= 0 (2.9)

with
z′′

z
= a2H2

(
2− 5HN

H
− 2

(
HN

H

)2

− 4
HNϕNN

HϕN

− 1

H2

∂2V (ϕ)

∂ϕ2

)
, (2.10)

for the sake of notation, we have suppressed the dependency of k on u and v; the subscript N
denotes differentiation with respect to the number of e-folds variable. The equations for the
tensor modes are

vNN +

(
1 +

HN

H

)
vN +

(
k2 − a′′

a

)
v

a2H2
= 0 (2.11)

with
a′′

a
= H2a2

(
2 +

HN

H

)
. (2.12)

The initial conditions on the perturbations are set when the physical wavelengths are
well inside the Hubble radius, i.e., when k/aH ≫ 1 and the Bunch-Davies vacuum conditions
are applied [70]. The conditions on both scalar and tensor perturbations are established when
k2 ≫ z′′/z and k2 ≫ a′′/a, respectively. In this limit, the k2 term in Eqs.(2.8) dominates,
and the modes have an oscillatory solution, u ∝ exp (−ikN/aH) for a u = {uk, vk}. The initial
conditions at Ni are given after computing the normalization factor of the oscillatory solutions

u(Ni) =
1√
2k

and uN(Ni) = −i
√
k

2

1

aH
(2.13)

The scalar and the tensor power spectra, PR(k) and PT(k), are expressed in terms of the
mode functions (uk, vk) as follows:

PR(k) =
k3

2π2
|R|2 = k3

2π2

∣∣∣uk
z

∣∣∣2
Ne

, (2.14a)

PT(k) =
k3

2π2
|ψ|2 = k3

2π2

∣∣∣vk
a

∣∣∣2
Ne

. (2.14b)

To compare the observable parameters with observational data, we need to compute the
scalar spectral tilt ns and the tensor-to-scalar ratio r at the pivotal scale (k⋆ = 0.05Mpc−1)
which are related to the primordial power spectrum as

ns − 1 ≡ d lnPR

d ln k
, r =

PT

PR

, (2.15)
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Our aim is to iteratively compute the evolution of the Mukhanov-Sasaki equations for dif-
ferent k-modes, Eqs.(2.8), for the inflation potential with a step described in the section below,
first, compute the primordial power spectrum, and then to compute the spectral distortions
described in the next section. Numerically, we take the initial conditions when k/aH ≈ 102

for each perturbation mode, which is sufficient enough for the numerical evolution [50, 71–74].
With the solutions to the background at hand, we can evaluate the coefficients in the equa-
tions (2.8) governing the perturbations. Starting with the initial conditions (2.13), we use
method (py)oscode [73] specialized in fast solutions of oscillatory ODEs to evolve the scalar
and tensor perturbations until the on super-Hubble scales, mainly, when k/aH ≈ 10−2.

2.2 The step potential

Precision measurements using CMB and large-scale structures data have revealed that the
density perturbations exhibit a nearly scale-invariant PPS [5, 23–25]. This observation agrees
with canonical inflationary models, which estimate a scale-invariant or Harrison-Zeldovich
spectrum [75, 76]. Such PPS can be parameterized using a simple power-law. Nevertheless,
deviations from the power-law (or features) in the PPS reconstructions might provide a more
accurate representation of the observational data [48, 49]; it could also indicate non-trivial
and richer inflationary dynamics [26, 36, 50, 52, 77–82]. Distinguishing between statistical
fluctuations, noise, systematics in the data, and genuine features derived from the inflaton
mechanism remains challenging [25–30, 41, 42, 44, 46], and certainly, it will be an interesting
avenue to explore with future surveys measuring the SD and getting constraints to the PPS
[6, 19–21].

The features in the PPS are intriguing because they cannot be produced by the stan-
dard slow-roll inflationary models, and such a departure could be attributed to a step in the
inflationary potential in the following way

V (ϕ) =M4

(
ϕ

Mpl

)n [
1 + β tanh

(
ϕ− ϕstep

δ

)]
, (2.16)

where the step occurs at ϕ = ϕstep, M is the inflaton mass in Planck mass units (Mpl); the
parameters β and δ denote the amplitude and width of the step, respectively; and n is the
power dependency with respect to the field, see Fig. 1.

Considering the power-law potential alone, V (ϕ) ∝ ϕn, the case for n = 2 is known as
the chaotic potential. Cases when n > 1, can lead to large–field inflationary models; this
is, they can reach super–Planckian distance in field space during inflation and predict large
values for the tensor-to-scalar ratio. On the other hand, powers with n < 1 lead to small–field
models that predict a smaller tensor-to-scalar ratio, which is in agreement with the latest
observational upper bounds with r < 0.037 using Planck+Bicep-Keck+BAO+lensing data
[83, 84]; where BAO stands for baryon acoustic oscillations. We are motivated to study a
fractional power-law with n = 2/3 because it can lead to predicting a scalar spectral index
and a tensor-to-scalar ratio in agreement with current cosmological observations. Additionally,
it naturally arrives in effective field theories or in the context of string theory in D-branes
scenarios or fields coupled to non-standard gravity theories [85–90].

Therefore, considering adding a step to the power-law potential with n = 2/3 is of
significant interest because of its implications for various phases in the evolution of the Uni-
verse, from inflation to reheating [4, 91, 92]. It can also provide insights into the dynamics
of scalar fields and their interactions with other fields or particles, and it can be related to
dip/enhancements in the primordial power spectrum, which can eventually be constrained
through SD observations and does not necessitate super-Planckian field values during in-
flation, thereby sidestepping potential issues with high-energy physics and quantum gravity
effects.
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Figure 1: Inflationary potential. V0 represents the power-law inflation with a power of
n = 2/3. The blue, orange, green and red solid line correspond to step potential (see Eq.
2.16) for fixed δ = {0.02, 0.11, 0.21, 0.3} in Mpl units, respectively, we take ϕstep = 7.425Mpl

and β = 0.075.

3 Spectral Distortions

Spectral distortions are classified depending on their spectral shape and are directly re-
lated to the thermodynamic history of the photons. At z ≳ 2 × 106, Compton scatter-
ing is the dominant collision process; it efficiently drives any perturbation to thermody-
namic equilibrium, keeping the CMB close to a black body spectrum. Between redshift
ranges 5 × 104 ≲ z ≲ 2 × 106, processes that alter the number-density of photons, such as
Bremsstrahlung and double Compton scattering, become inefficient due to the expansion of
the Universe. This results in a Bose-Einstein distribution with a non-zero chemical potential
µ for the photons which is approximately constant. Although µ is largely constant, it is in-
trinsically a function of both frequency and time [93]. For redshifts z ≲ 5 × 104, Compton
scattering becomes inefficient. At this point, background electrons at a higher temperature
can boost CMB photons out of equilibrium to create y SD. This effect is conceptually similar
to the Sunyaev–Zeldovich effect but is pertinent to the early Universe [94].

Observable SD is expected on scales smaller than those for galaxies, restricting the am-
plitude of initial perturbations on small scales and complementing the results from CMB
anisotropy observations, where constraints on smaller scales are influenced by the Silk damp-
ing effect. Consequently, this provides constraints for the initial power spectrum at higher
wavenumbers, 1 ≲ k ≲ 104 Mpc−1. Precise measurements of the CMB power spectrum along
with SD constraints from COBE/FIRAS observations [95, 96] established upper bounds for
µ ≲ 9× 10−5 and y ≲ 1.5× 10−5 at 2σ C.L. Moreover, the ARCADE 2 experiment provided
slightly more conservative bounds with µ < 6 × 10−4 at 2σ C.L. [97]. The TRIS experi-
ment found tighter constraints, µ ≲ 6 × 10−5, for frequencies close to ν ≃ 1 GHz [98]. The
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absence of primordial black holes and ultracompact minihalos has helped set upper bounds
on the small-scale primordial power spectrum amplitude. Specifically, on the amplitude of
the primordial power spectrum to be less than 0.01 − 0.06 over for the wavenumber range
0.01 ≲ k ≲ 1023 Mpc−1. Forthcoming projects, like PIXIE and its extensions, promise to
explore scales that were previously out of reach [64, 99]. These advances will shed further
light on the inflationary epoch and necessitate a reevaluation of our theoretical predictions.

In this work, we employ an analytic approach for small spectral distortions µ and y (µ,
y ≪ 1). During the radiation-dominated epoch, energy stored in small-scale density perturba-
tions gets dissipated through photon diffusion, the Silk damping process. This dissipation led
to the heating of the CMB photons, which in turn caused µ and y SD. The magnitude of the
SD directly depends on the shape and amplitude of the PPS of curvature perturbations, PR ,
larger perturbations would lead to more significant heating and more pronounced distortions.
An analytic approach that estimates the impact on µ and y SD from the damping is given by

i ≈
∫ ∞

kmin

k2dk

2π2
PR(k)W

i(k) , (3.1)

where kmin = 1 Mpc−1, and W i(k) represents the efficiency at which the acoustic damping
and thermalization effects contribute at a given scale (k-modes) to the i–SD, where i ∈ {y, µ}.
For instance, the function peaks at certain redshifts where the distortions are most efficiently
produced and diminishes at others. The window function is defined by

W y(k) ≈ C2

2
e−k2/322 , (3.2a)

Wµ(k) ≈ 2.8C2 exp

−

[
k

1360 kmin

]2
1 +

[
k

260 kmin

]0.3
+
[

k
340 kmin

]
− 5.6W y(k) . (3.2b)

where the factor C is the amplitude of the perturbation; it depends on the type of the per-
turbations. Specifically, for adiabatic modes, is a constant C ≈ 0.902. The exponential
term introduces the Silk damping, which account for the k-modes at which perturbations get
damped due to photon diffusion. Therefore, the window function ensures that small-scale per-
turbations (high-k values) are suppressed in their contribution to the distortions [15, 18]. The
code CosmoTherm solves the cosmological perturbation equations to obtain accurate results
for the energy release rates caused by the damping of the acoustic modes [15]. Comparing
its outcomes with those from the analytic approach reveals an excellent consistency. The
differences are mainly noticeable for the y–SD, but is less than 10% difference [19].

The total difference of the photon intensity spectrum compared to the Planck distribu-
tion, ∆I, can be computed based on the photon phase-space distribution, the photon Boltz-
mann equation, and Green’s function approach [13, 100]. The Green’s functions translate
an energy injection at a certain k-mode (or redshift) to a distortion of a specific frequency
observed at the current time. The total intensity spectrum in the presence of these distortions
can be computed as,

∆I(x) =
∆T

T
G(x) + y Y (x) + µM(x) . (3.3)

TheG(x),M(x), and Y (x) are normalized spectral-shape functions that represent the different
types of spectral distortions. The first term is a shift in the temperature of the CMB spectrum,
∆T , and G(x) is defined as

G(x) = −x∂B(x)

∂x
, with B(x) =

1

(ex − 1)
and x ≡ hν

kBT
, (3.4)
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where x is the dimensionless frequency variable, h is the Planck constant, ν is the frequency,
kB is the Boltzmann constant, and T is the photon temperature. M(x) and Y (x) function
accompanying the µ and y spectral distortions, respectively, are defined as

Y (x) = G(x)

(
x
ex + 1

ex − 1
− 4

)
, (3.5a)

M(x) = G(x)

(
αµ − 1

x

)
, (3.5b)

where the coefficient αµ is a correction factor, determined under the constraint that the µ–SD
conserves the photon number density. Its approximate value is αµ = 0.4561. The term ∆T/T in
Eq. (3.3) does not introduce any distortion to the blackbody spectrum. Instead, It corresponds
to a departure of the average temperature of the CMB from the blackbody temperature. Such
a deviation is challenging to detect [13]. In this context, we focus on computing the y and µ
SD. Earlier research has demonstrated that SD can set stringent limits on the amplitude of the
primordial power spectrum, especially when derived from certain inflationary potentials that
exhibit distinct features [15, 18, 22, 101]. Our study specifically delves into the SD generated
by the inflationary models characterized by a step potential.

4 Results

We study the power-law inflation potential with a power of n = 2/3 that can match current
cosmological observations and stand out in various theoretical models. We incorporated a
step in the potential (see Eq.(2.16)) because of its various cosmological implications, from
inflationary phases to reheating. This extension offers insights into dips or enhancements in
the PPS that, on the one hand, can be related to inflationary dynamics and, on the other hand,
can be constrained by upcoming experimental missions, e.g., PIXIE, via the measurement of
SD of the CMB photons. Using Eq.(3.1) we compute the amplitude of the µ and y SD type,
which allows us to forecast the intensity signal through Eq.(3.3) given by the step-potential
model.

The potential is defined by three main free parameters: the scale when the step occurs
ϕstep, the amplitude of the step β, and the duration of the step δ. We also fix the inflaton
mass M ≈ 2.66 × 10−4Mpl to avoid degeneracy with the amplitude. For comparison with
observations, we established the pivot scale at k⋆ = 0.05 Mpc−1, where the amplitude of scalar
perturbations is ln(1010AS) = 3.040± 0.016 and the tensor-to-scalar ratio is r < 0.37. [5, 83].

First, we solve the background evolution defined by the Klein-Gordon (Eq.(2.6)) and
Friedmann (Eq.(2.7)) equations. Then, we solve the Mukhanov-Sasaki equation to obtain the
evolution of each of the scalar and tensor modes with Eqs.(2.1) and (2.1), respectively. When
the evolution of each mode is stretched beyond the causal horizon (when k ≫ (aH)−1), their
amplitude stops evolving; after the end of inflation, the modes re-enter the horizon with the
same amplitude, start evolving, and eventually lead to the formation of galaxies, clusters, and
other cosmic structures. The frozen squared amplitude of the scalar (and tensor) modes at
the horizon crossing defines the scalar (tensor) PPS; see Eqs.(2.14).

In Fig. 2, we show examples of the PPS that we obtained; the introduction of a step
in the power-law potential leads to oscillations in both scalar and tensor PPS. The charac-
teristics of these oscillations are determined by the three free parameters ϕstep, β, and δ of
the potential. ϕstep shifts the scales where the oscillations are located; for larger values of
ϕstep, the oscillations begin at smaller wavenumber values, k. The β parameters change the
initial amplitude and the number of oscillations; the amplitude is small, and a few oscillations
are found for a low value of β. The δ parameter affects the duration and number of the
oscillations; it is also degenerated with β and also affects the amplitude of the oscillations.
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(a) β and δ fixed. (b) ϕstep and δ fixed. (c) ϕstep and β fixed.

Figure 2: Scalar primordial power spectrum, PR(k), of inflationary models based in a step
potential, computed via Eq.(2.14a) for ϕstep (left), β (middle) and δ-dependence (right). The
dotted vertical lines separate the regions where PR(k) is almost scale invariant of the regions
where is scale variant. In (a) β = 0.075 and δ = 0.055Mpl, in (b) ϕstep = 7.425Mpl and
δ = 0.055Mpl, and in (c) ϕstep = 7.425Mpl and β = 0.075.

The parameters β and δ have a direct impact on the dynamics of the inflaton field and the
expansion ratio of the Universe; for instance, large values of β combined with small δ values
could temporarily stop the Universe from inflating since ϵ > 1 can be achieved for certain
parameter combination. High resolution is required for small values of δ in order to compute
the high oscillatory features.

Despite the fact that some studies claim oscillation in the CMB observational window
10−3 ≤ k ≤ 10−1Mpc−1 our focus is on estimating the SD at smaller scales. Specifically, we
study at wavenumbers ranging from 1 ≤ k ≤ 104Mpc−1; these scales will likely be covered in
upcoming SD observational surveys. To guarantee that the oscillatory features fall within the
SD observational window of these future surveys and to ensure that inflation is uninterrupted
by the step (by the condition ϵ < 1 for the duration of inflation), the parameter space needs
to be initially constrained by

7.3 ≤ ϕstep
Mpl

≤ 7.55, 0.01 ≤ β ≤ 0.23, and 0.02 ≤ δ

Mpl
≤ 0.3.

After the perturbation modes re-enter the cosmological horizon, they start to evolve;
however, the acoustic modes with a wavelength shorter than the mean free path of photons
face a damping behavior (known as Silk-damping), observed at high-l values in the CMB
angular power spectrum. The energy released due to the Silk damping is dissipated into the
monopole of the radiation field, which creates SD. The CMB monopole is directly connected
to the primordial power spectrum via perturbation theory. Therefore, by measuring µ and
y SD, using Eq.(3.1), we indirectly can provide information related to inflation through the
PPS.

In Fig. 3, we present the forecast for the µ–SD. The white curve, when visible, represents
the value predicted by the 2/3-power-law model; this is, with β = 0. For this case, the
model predicts a value for µ2/3 = 2.0113 × 10−8 which also coincides for n = 2/3 for the
axion monodromy model in [102]; this prediction is also proximate to the PIXIE detection
threshold at a 2σ C.L. and the prediction of the ΛCDM model, which is µΛCDM = 2.00×10−8

[19, 22, 58], making it the canonical value. The top of Fig. 3 show the β − δ parameter space
for specific fixed values of ϕstep = {7.3, 7.43, 7.55} in Planck mass units, Mpl. The middle
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(a) ϕstep = 7.30Mpl (b) ϕstep = 7.43Mpl (c) ϕstep = 7.55Mpl

(d) β = 0.01 (e) β = 0.12 (f) β = 0.23

(g) δ = 0.02Mpl (h) δ = 0.16Mpl (i) δ = 0.30Mpl

Figure 3: The color-map shows the computations of µ–SD with Eq.(3.1), based on the step–
potential inflationary model Eq.(2.16). When present, white line denotes the value predicted
by the 2/3-power-law (β = 0) for which µ2/3 = 2.0113× 10−8.

section focuses on the δ−ϕstep parameter space, holding β = {0.01, 0.12, 0.23}. The bottom
section shows the ϕstep − β parameter space, with fixed value of δ = {0.02, 0.16, 0.3} in Mpl

units.

Variations in the β and δ parameters influence µ–SD more than those in ϕstep. The
amplitude arising from the step in the PPS is primarily influenced by the β parameter; an
increase in amplitude corresponds to a larger µ value. Oscillations in the PPS become more
pronounced as δ decreases and less pronounced as δ increases. There is a threshold in the
δ − β parameter space in which the µ values fall below the detection threshold, and it is
for δ > 0.17Mpl that will be outside the observational sensitivity for any combination of µ
and β, see Figs. 3a, 3b and 3c. The sensitivity of µ to ϕstep is lower compared to the other
parameters because ϕstep mainly shifts the oscillation in the PPS; for instance, the maximum
value of µ changes 23% comparing the two extremes of the ϕstep parameter, see Figs. 3a and
3c. Moreover, when computing the µ–SD over a broad wavenumber range, its value remains
largely unaffected by ϕstep, see Figs. 3d, 3e, and 3f.

When ϕstep is held constant, the magnitude of the µ–SD is most pronounced at the
highest β values, driven primarily by the oscillation amplitudes. Consequently, a decrease in
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(a) ϕstep = 7.30Mpl (b) ϕstep = 7.43Mpl (c) ϕstep = 7.55Mpl

(d) β = 0.01 (e) β = 0.12 (f) β = 0.23

(g) δ = 0.02Mpl (h) δ = 0.16Mpl (i) δ = 0.30Mpl

Figure 4: The color-map shows the computations of y–SD with Eq. (3.1), based on the
step potential inflationary model Eq.(2.16). When present, the orange line denotes the value
predicted by the 2/3-power-law (β = 0) for which y = 2.4376 × 10−9 [102]. The red line
represents the observational threshold of PIXIE mission at the 2σ C.L., corresponding to
y = 4× 10−9 [22].

β leads to smaller values for µ. The peak value of µ–SD (µ = 49.6 × 10−8) is an order of
magnitude larger than the fiducial model, results from the parameter set: ϕstep = 7.53Mpl,
β = 0.23, and δ = 0.02Mpl (see Figs. 3c, 3f, and 3g). This combination, with a clearly high
β and a low δ, ensures pronounced oscillations in the PPS. In contrast, the minimal µ value
(µ = 0.70 × 10−8) is 34% lower than the fiducial model, and results from ϕstep = 7.55Mpl,
β = 0.07, and δ = 0.3Mpl (see Figs. 3c and 3i), a set characterized by a small β and large δ
values.

In Fig. 4, color maps are presented to illustrate the forecasted value of the y–type SD,
analogous to what was done for µ. The orange curve, when visible, indicates the value as
predicted by the 2/3-power-law. Specifically, for β = 0, the y-SD is y2/3 = 2.44× 10−9, which
also coincides with the power-law behavior of the axion monodromy model [102], which is
7% lower in value in contrast to the yΛCDM = 3.54× 10−9 for the ΛCDM vanilla model [19].
When depicted, a red line marks the observational threshold for PIXIE at a 2σ C.L., which
is y = 4× 10−9 [22].

In the parameter space, a specific region yields y-type SD values that exceed the obser-
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µ/10−8 y/10−9

Parameters max = 49.58 min = 0.70 max = 4.99 min = 1.73

ϕstep [Mpl] 7.53 7.55 7.55 7.55
β 0.23 0.07 0.23 0.10
δ [Mpl] 0.02 0.30 0.02 0.30

Table 1: Maximum (depicted as max) and minimum (depicted as min) values of the spectral
distortions µ and y computed for the step potential in the parameter space {ϕstep, β, δ}.

vational sensitivity. This region is characterized by the conditions: ϕstep > 7.54Mpl, β > 0.10,
and δ < 0.026Mpl. Additionally, another region marked by ϕstep > 7.51Mpl and δ < 0.03Mpl,
and independent of the variation with respect to the β parameter, produces y–SD values that
surpass the expected 2/3-power-law value. These regions are shown in Figs. 4c, 4e, 4f, and
4g.

The sensitivity of the y–SD to variations in ϕstep is greater than that of the µ–SD,
however, we can see a shorter spectrum for y values when δ > 0.1Mpl, as seen in Figs. 4h and
4i. The largest values for y–SD arise from a combination of large ϕstep and β values coupled
with small δ values. Specifically, the peak value forecasted for y–SD is y = 4.99 × 10−9,
which is twice the value associated with the fiducial 2/3-power-law, y = 2.05 y2/3, and 41%
larger than yΛCDM. This peak corresponds to the parameter set ϕstep = 7.55Mpl, β = 0.23,
and δ = 0.02Mpl, as seen in Figs. 4c, 4f, and 4g. Conversely, the minimal y–SD value is
y = 1.73 × 10−9, which is 30% lower than the expected value for a step-less potential, y2/3.
This minimum is obtained with the parameters ϕstep = 7.55Mpl, β = 0.1, and δ = 0.3Mpl,
seen in Figs. 4c, 4d, and 4i. It is interesting to notice that maximum and minimum values
of both µ and y SD are when ϕstep ≈ 7.55 Mpl, the largest value for ϕstep in our parameter
space; conversely, ϕstep ≈ 7.30Mpl is closer to the 2/3-power-law and is the minimum value in
the explored parameter space.

Furthermore, knowing the range of µ and y predicted by our model in the parameter
space used is important to analyze whether the features of the step are distinguishable from
the 2/3-power-law and ΛCDM . Both the maximum and minimum values obtained from the
analysis for the µ and y SD by the step-potential model, along with the parameter space to
obtain such values, are presented in Table 1.

To gain a better understanding of the connection between the SD and the inflation
potential, we plotted the marginalization over one specific parameter in Fig. 5. The top
plots show the marginalization used to compute µ–SD, while the bottom plots are for y–SD.
Examining Fig. 5 from left to right: in 5a and 5d, we showcase the dependency of ϕstep, with
variation in β and a fixed δ = 0.02Mpl; in 5b and 5e, we depict the β dependency while
varying δ and holding ϕstep = 7.53Mpl (ϕstep = 7.55Mpl) for µ–SD (y–SD) . Lastly, 5c and 5f
presents the δ dependency, with variations in ϕstep and a fixed β = 0.23. We selected these
specific fixed values because they yield the maximal values for both µ or y SD, see Table 1.

Figures 5b and 5e show that as the value of β increases –indicating a larger step in the
PPS– both µ and y SD become large. Regarding the δ variable, large distortions are obtained
at smaller δ values because the oscillation in the PPS emerges more abruptly. Thus, for large
δ values, the step transition becomes smoother, and distortions quickly converge to the value
given by the 2/3-power-law potential, see Figs. 5c and 5f. A marginalized analysis reveals that
the y–SD values exhibit a pattern reminding of damping oscillation with both increasing-δ
values and decreasing-ϕstep values. This behavior is corroborated by the degenerate region in
the δ-β parameter space as depicted in Fig. 4c, which corresponds to the oscillations observed
in Fig. 5f for the range 0.07 < δ/Mpl < 0.11. The minimum of the y–SD value in Fig. 5d is
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(a) δ = 0.02Mpl (b) ϕstep = 7.53Mpl (c) β = 0.23

(d) δ = 0.02Mpl (e) ϕstep = 7.55Mpl (f) β = 0.23

Figure 5: We present marginalized computations for the spectral distortions µ (shown at the
top) and y (displayed at the bottom). On the left side, distortions are plotted as a function
of ϕstep for different values of β, with a fixed value of δ = 0.02Mpl. In the middle are the
distortions as a function of β for different values of δ. For those plots, ϕstep = 7.53Mpl

remains constant for µ and ϕstep = 7.55Mpl for y. On the right side, distortions are plotted
as a function of δ for a range of ϕstep values, with a fixed value of β = 0.23. The fixed value
of the parameters is set to yield the maximum distortion value.

related to the circular or partially-circular isolines in Figs.4b, 4d, and 4g. From these figures,
one can discern the parameter space producing a y-SD value below the value expected from
the 2/3-power-law, which is defined by the combination of parameters β < 0.024, 7.44 ≲
ϕstep/Mpl ≲ 7.49, and 0.05 ≲ δ/Mpl ≲ 0.08

Several interesting observations can be made from the marginalized plots for µ and y
SD. Referring to Figs. 5c and 5d, when ϕstep < 7.40Mpl, the values for µ fall within the
range 39.0 ≲ µ/10−8 ≲ 45.3. In contrast, the y–SD approaches the value defined by the
2/3-power-law, y ≈ y2/3. A similar behavior is evident in Figs. 5c and 5f for the δ interval
0.10 ≲ δ/Mpl ≲ 0.19. In this range, the µ-SD is 1 < µ/µ2/3 < 2.85, while the y distortion
remains close to y ≈ y2/3. These unique patterns could lead to distinct features in the photon
intensity that can distinguish between the step-less potential or the ΛCDM model; also see
below the discussion for the G and H cases when computing the intensity.

We identify a distinct region in which small values of β < 0.075 and large values of
δ ≳ 0.12Mpl lead to obtain values y/y2/3 < 1 when we expected a ratio close to one, as seen
in Fig. 5e. The reason for this behavior can be attributed to the features of the PPS in which
for β < 0.075 induces a half-slow oscillation, which looks like a dip in the PPS rather than
having multiple oscillations, see Fig. 7 in the appendix. This, along with the behavior of the
correspondent window function, we obtain y-SD smaller than the expected for 2/3-power-law,
in contrast to the µ-SD, which tends to the fiducial value. This can also be seen in Fig. 3a,
in which the region of interest we obtain similar values of µ; comparing now with Fig. 4a in
which a clear relation between β and δ is shown within the isolines tending to values of y
which are up to 9.7% smaller than y2/3.
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Label ϕstep/Mpl β δ/Mpl µ/10−8 µ/µ2/3 y/10−9 y/y2/3

〈
∆I

∆I2/3

〉 〈
∆I

∆IΛCDM

〉
A 7.53 0.23 0.02 49.58 24.60 3.31 1.36 11.08 3.81
B 7.55 0.23 0.02 49.34 24.54 4.98 2.04 11.40 3.86
C 7.30 0.01 0.05 1.97 0.97 2.37 0.97 0.97 0.25
D 7.48 0.23 0.02 48.63 24.18 2.04 0.84 10.60 3.68
E 7.55 0.07 0.30 0.70 0.35 2.09 0.86 0.77 0.14
F 7.55 0.01 0.30 1.21 0.60 1.73 0.71 0.68 0.16
G 7.40 0.23 0.02 45.31 22.53 2.37 0.97 9.98 3.45
H 7.55 0.23 0.11 5.74 2.85 2.41 0.99 1.74 0.53

Table 2: Contribution arising from µ and y SD that were used for calculate with Eq. (3.3)
the distortion ∆I of the photon intensity. ∆I2/3 was obtained from the contribution of µ2/3 =
2.011×10−8 and y2/3 = 2.438×10−9, similar with the signal ∆IΛCDM calculated from µΛCDM =
2.00× 10−8 and yΛCDM = 3.54× 10−9[102, table 3].

We compute the contributions of µ and y to the distortions of the photon intensity
spectrum ∆I(ν), see Eq.(3.3), and compare the results with ∆I2/3, that was obtained from
the contribution of µ2/3 and y2/3 (similar is with the signal ∆IΛCDM, related by µΛCDM and
yΛCDM), and to the sensitivity of the PIXIE experiment. In the left panel of Fig. 6 we have
plotted the intensity in units of Jy/sr = 10−26Wm−2Hz−1sr−1 for the potential with a step.

Now, let us choose some configurations in the parameter space to compute the photon
intensity spectrum. Table 2 and Fig. 6 show the cases chosen; below, we explain the reasons
for those points. First, we choose the points that give the maximum of µ–SD and y–SD,
characterized by having large β and small δ values, both depicted as points A and B, respec-
tively. C label is the point closer to 2/3-power-law; this is characterized by small β and large
δ. Point D describes the minimum value on the local minimum for y–SD shown in Fig. 4d in
the range of 7.41 < ϕstep/Mpl < 7.50. Points E and F depicted the points with the lowest µ
and y SD, respectively. Point G and H have a y ≈ y2/3 but µ ̸= µ2/3.

For cases having high oscillatory features, we notice that the resolution, although impor-
tant when computing the PPS, does not significantly affect the computation of the intensity,
mainly because the oscillation transit between each oscillation very rapidly does not affect
the integral computation in Eq. (3.1), having approximately 300 data points per oscillation
was enough for the intensity computation.

When the ratio y/y2/3 is larger than µ/µ2/3 the intensity signal tends to shift to larger
frequency values; see E and F cases in Fig. 6. Other cases fulfill that µ/µ2/3 is larger than
y/y2/3, in which case the intensity curve shifts to smaller frequency values. In cases A, B, D,
and G, we notice that the larger the µ value, the larger the intensity signal, these four cases
have µ/µ2/3 ≳ 22.53 and the intensity signal is ∆I/∆I2/3 ≳ 9.98. For the D case is a local
minimum for the y–SD; however, µ dominates when computing the intensity. On the other
hand, E and F cases have the lowest µ/µ2/3 ratio, along with the fact that its y–SD values
are y/y2/3 < 1, their intensity signal get below the sensitivity of PIXIE, except for a small
window at large frequencies.

The C case is indistinguishable from the 2/3-power-law, we should mention that this
point was found for ϕstep = 7.30Mpl, though variation in the region 7.30 < ϕstep/Mpl ≲ 7.43
gives all similar µ and y values; looking for when the C point deviates from µ2/3 (because µ
variate more rapidly than y), we found that, when fixing ϕstep and β and when δ ≲ 0.04Mpl

satisfy µ/µ2/3 > 1.1, this is 10% above from the step-less case, see Fig. 3a. Similarly, fixing
ϕstep and δ as in the C case but changing β, we get µ/µ2/3 ≥ 1.1 when β > 0.02; the last
two are, therefore, for signals that would be at least 10% stronger than the 2/3-power-law,
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Figure 6: Predictions on the contribution to the distortion ∆I of the photon intensity arising
from µ and y SD in the chaotic with a step inflationary models is show in the left panel for the
different cases shown in Table. 2: four solid curves correspond to A (cyan), E (dark green), F
(red), and H (olive); the ∆I2/3 prediction (determined from µ2/3 and y2/3) is the solid black
line. Three dotted curves are shown: C (orange), D (green), and G (yellow-green). The grey
line is the predicted PIXIE sensitivity at a 2σ C.L. The plot on the right panel shows the ratio
of the intensities computed with Eq.(3.3) and the 2/3-power-law prediction,

〈
∆I/∆I2/3

〉
, for

the same scenarios as in the left panel and keeping the same labels. In Table 2, the average
difference is computed for frequencies outside the range 100GHz ≲ ν ≲ 250GHz (the grey
region).

otherwise, the signal would be indistinguishable from the fiducial model or could get below the
PIXIE observational threshold, this region also coincides with the parameter space producing
a y-SD value above the value expected from the 2/3-power-law discussed above.

The G and H cases were already described; both are cases has a y/y2/3 ≈ 1 and µ/µ2/3 >
1. Though the intensity in the G case is dominated by the large value for the µ–SD, the
H case could be more interesting since it represents an intermediate case for the intensity,
∆I/∆I2/3 ≈ 1.74, in which we have a shift of the intensity signal to smaller frequency values
that can only be achieved through the step on the potential.

5 Conclusion

We have conducted an analysis of a power-law inflationary potential with a power of n = 2/3
enriched by a step feature as detailed in Eq.(2.16). We aimed to compute the PPS and ex-
plore the resulting SD and their impact on inflationary dynamics. This work is also motivated
considering the increasing capability of experimental missions like PIXIE, which could poten-
tially detect SD in the CMB. Moreover, models with n = 2/3 are in agreement at 2σ C.L.
with recent observations, producing a smaller tensor-to-scalar ratio. Furthermore, the step
potential emerges in various theoretical frameworks for understanding various cosmological
phases, offering insights into scalar field dynamics, their interactions, and potential imprints
on cosmological observables.

In analyzing the impact of a step in the inflaton potential, we observed that, unlike
smooth potentials, which typically yield monotonically varying power spectra, a step can
induce distinct features in the PPS. These include at certain scales oscillations or specific
enhancements/suppressions. If these features fall outside the current observational window,
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they can be constrained with upcoming observational data, thus offering a robust method
to evaluate the feasibility of step-potential inflationary models. The three parameters of the
potential drive the features of the oscillations: β, δ, and ϕstep. The parameter β influences the
amplitude of SD, affecting both µ and y types; the δ parameter correlates with the duration
and the abruptness of the oscillations, while ϕstep determines the onset of these oscillations
in the k-space of the PPS.

To ensure that the oscillations generated by our model are detectable within the obser-
vational window of future surveys, specifically in the range 1 < k < 104 Mpc−1, we carefully
constrained our initial parameter space. This approach also ensured that the inflationary
dynamics remained uninterrupted, with ϵ < 1. Our analysis reveals that the constraints on
the parameter space vary depending on whether we are examining µ or y SD. However, it is
feasible to analyze each parameter independently.

Let us start with the parameter ϕstep. When µ/µ2/3 > 1 the value is largely unaffected
of variation of ϕstep a dependence with ϕstep is shown when µ/µ2/3 < 1, although these clearly
falls below the observational threshold. In contrast, y-SD displays a distinct dependence
on ϕstep values, with notable variations across different ranges of ϕstep; going from low to
high values: for 7.30 < ϕstep/Mpl ≲ 7.43 the ratio of y/y2/3 ≈ 1, this is, the y-SD closely
resembles the SD predicted by the 2/3-power-law model. For 7.43 < ϕstep/Mpl ≲ 7.49 we are
in a local minimum for y-SD, where most case we have y/y2/3 ≲ 1, within this range, the
y-SD is generally weaker compared to the standard. For 7.49 < ϕstep/Mpl ≲ 7.54, the step in
the potential becomes markedly distinct from the typical power-law behavior, and we obtain
stronger SD, y/y2/3 > 1. Lastly, for ϕstep ≳ 7.54Mpl the y-SD exceeds the observational
threshold of PIXIE.

The β parameter scales the magnitude of the µ-SD. Specifically, as the value of β in-
creases, so does the µ-SD. Conversely, a decrease in β leads to a reduction in µ-SD. As β
approaches zero, the µ-SD return to the standard 2/3-power-law model, µ/µ2/3 → 1. The
µ-SD are heavily influenced by a combination of both β and δ, with a lesser dependence on
ϕstep. For instance, setting δ = 0.05Mpl, when β > 0.02, µ-SD values rise above the 2/3-
power-law, in particular µ/µ2/3 ≳ 1.1. In terms of y-SD, the interplay of β and δ also plays
a significant role, leading to three distinct scenarios: For 0.01 < β ≲ 0.024 and δ ≳ 0.04Mpl,
in this parameter range we observe a counterintuitive phenomenon where y/y2/3 < 1. This
is attributed to the presence of half-oscillations or dips in the PPS, as explained earlier. For
0.024 ≲ β ≲ 0.1 and ϕstep ≳ 7.51Mpl, the model predicts an enhancement in y-SD compared
to the 2/3-power-law, y/y2/3 ≳ 1. For 0.1 ≲ β ≲ 0.23 and ϕstep ≳ 7.54Mpl, the y-SD values
exceed the observational threshold of PIXIE, suggesting a strong potential for detection in
this parameter space.

In our analysis, the δ parameter consistently influences both µ and y SD, with its value
determining the smoothness of the step. This relationship can be understood as follows: when
δ is larger, the step feature in the potential becomes smoother, leading to smaller spectral
distortions. Notably, for δ > 0.17Mpl, both µ and y SD tend towards the values predicted
by the standard 2/3-power-law model, respectively. In the case of y-SD, the region is more
extensive since for δ > 0.08Mpl, we have y/y2/3 ≈ 1. Conversely, lower values of δ result in
a more abrupt step, which in turn leads to larger spectral distortions. Within the parameter
space of 0.05 ≲ δ/Mpl ≲ 0.17, µ-SD values tend to exceed the standard power-law predictions.
However, the extent of this deviation also depends on the value of the β parameter. When
δ ≲ 0.047Mpl, we consistently observe stronger distortions regardless of the specific values of β
and ϕstep, this is µ/µ2/3 > 1. Furthermore, a combination of δ ≲ 0.047Mpl and ϕstep > 7.54Mpl

results in large SD, y/y2/3 > 1.

We have identified a specific parameter space defined by δ < 0.026Mpl, β > 0.1, and
ϕstep ≳ 7.53Mpl. Within this parameter range, y-SD signals that potentially exceed the detec-
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tion threshold of the PIXIE mission are produced. This parameter region also corresponds to
the maximum observed values of µ and y SD. This highlights the potential of this parameter
space to provide valuable insights into the most pronounced SD. However, it is important to
consider the limitations of PIXIE detection capabilities. This leads to the identification of
a parameter space where certain values may not be detectable, for µ-SD, the non-detectable
parameter space occurs when δ exceeds 0.17 Mpl. In this range, the spectral distortions are
presumably too subtle. Similarly, for y-SD, the undetectable parameter space is defined by
ϕstep < 7.54Mpl, β < 0.10, and δ > 0.026Mpl. Within these limits, the distortions are likely
below the detection threshold of PIXIE.

Our analysis of SD and the computation of the contributions of µ and y SD to the photon
intensity spectrum highlight the oscillatory nature of the PPS and its potential implications
for spectral distortion. This study enriches our understanding and constrains the step-like
inflationary models in light of future observational surveys.
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A Extra figures

In this section, we show some figures that help to the discussion when the y–SD is smaller
than the expected value for the 2/3-power-law.

(a) ϕstep and δ fixed (b) ϕstep and β fixed

Figure 7: Scalar primordial power spectrum of inflationary models based in a step potential
for small values of β (left panel) and for large values of δ (rigt panel). In both panels we take
ϕstep = 7.55Mpl; in the left panel δ is fixed in 0.3Mpl, while, in the right panel β is fixed in
0.075.
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