

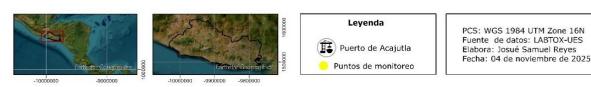
Informe de Fitoplancton Tóxico Puerto de Acajutla

Código de informe: INF-2025-024

Fecha de entrega: 14 de noviembre de 2025.

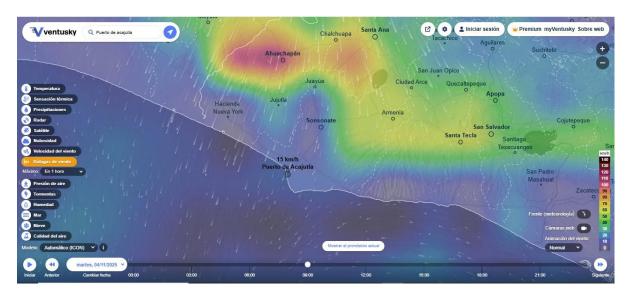
Analistas: Ana Salinas, Katherine Rodríguez Daniela Méndez y Alma Aguilar,

Detalles del muestreo:


Las muestras de agua marina fueron recolectadas en tres puntos del Puerto de Acajutla por personal de LABTOX-UES el 4 de noviembre del corriente año con colaboración de la Unión Portuaria del Pacifico, figura 1. Se registraron parámetros fisicoquímicos, se transportaron muestras para posterior análisis en laboratorio de clorofila-a, nitrógeno y fósforo total.

PUNTOS DE MONITOREO EN EL PUERTO DE ACAJUTLA, EL SALVADOR

Figura 1. Puntos monitoreados en el puerto de la Acajutla, por personal de LABTOX-UES el 4 de noviembre 2025.



Método utilizado: Las especies del fitoplancton se cuantificaron por método de Utermöhl para estimar concentración celular, siguiendo procedimientos establecidos en el sistema de calidad del Laboratorio. La clorofila-a fue determinada por método US-EPA 446, nitrógeno total por US-EPA 352.1 y fósforo total por US-EPA 365.3.

RESULTADOS

Durante el monitoreo no se observaron parches de coloración que sugirieran presencia de proliferación algal nociva. Las condiciones ambientales durante el muestreo no fueron óptimas, debido a vientos intensos de hasta 15 km/h (figura 2), esto podría influir negativamente en la colecta de fitoplancton por mezcla vertical en la columna de agua inducida por el viento favorece el desplazamiento de especies hacia capas más profundas de la columna de agua. En consecuencia, la abundancia superficial observada puede subestimarse, afectando representatividad de la muestra.

Figura 2. Ráfagas de viento en puerto de Acajutla, el 4 de noviembre 2025 durante el muestreo de agua marina. Imagen tomada de Ventusky: https://www.ventusky.com/es/rafagas-de-viento-mapa/en-1-hora#p=13.595;-89.782;9&t=20251104/1500

El análisis taxonómico y cuantitativo reveló que las mayores concentraciones celulares estuvieron dominadas por dos géneros principales en el punto 3, con *Prorocentrum spp*. en concentración o abundancia máxima de 1,980 cel/L, estas especies son conocidas por ser potencialmente productoras de toxinas, su toxicidad no ha sido asociada a eventos de intoxicación en el país, y *Scrippsiela sp*. en concentración 660 cel/L en el mismo punto de muestreo. Además, se identificaron otras especies en bajas concentraciones, tabla 1.Los resultados se expresan en número de células por litro de agua (cel/L)

Tabla 1. Concentraciones o abundancias celulares de especies potencialmente tóxicas encontradas en el Puerto de Acajutla. Según la Lista de Referencia Taxonómica de Microalgas Nocivas de UNESCO y literatura científica. **ND**: No detectado.

T	Concen	tración celu	lar (cel/L)	0.4.2.1				
Taxón	P-1 P-2 P		P-3	Categoría ¹				
Prorocentrum spp.	980	460	1,980	Potencial mente tóxico				
Scrippsiela sp.	ND	300	660	Nocivo				
Skeletonema costatum	120	120	440	Nocivo				
Pseudo nitzchia spp.	100	80	440	Potencial mente tóxico				
Navicula spp.	120	280	180	Nociva				
Dinophysis spp.	240	ND	220	Potencial mente tóxico				
Asterionellopsis glacialis	80	40	280	inocua				
Coscinodiscus sp.	100	120	180	Nocivo				
Chaetoceros spp.	320	ND	ND	Nocivo				
Gyrosigma spp.	80	20	220	Inocua				
Leptocylindrus sp	40	40	240	Nocivo				
Tripos spp.	20	ND	180	Potencial mente tóxico				
Cylindrotheca spp.	60	40	100	Nocivo				
Pleurosigma sp	40	20	100	Inocua				
Hemiaulus sp	ND	ND	40	Nocivo				
Cianobacteria								
Komvophoron sp	700	ND	ND	Inocuo				

En la Tabla 2 se presentan los parámetros fisicoquímicos medidos *in situ*. Los cuales tienen un comportamiento similar entre los puntos de muestreo.

Tabla 2. Valores de los factores fisicoquímicos en los puntos muestreados en Puerto de Acajutla el 04 de noviembre de 2025. **T**: temperatura, **TDS**: sólidos disueltos totales, (ppt: partes por trillón).

Punto	T (°C)	Salinidad (PSU)	Conductividad (mS/cm)	pН	Oxígeno Disuelto (%)	TDS (ppt)	Secchi (m)
P-1	30.01	31.69	48.75	7.97	93.6	24.38	1.9
P-2	30.16	32.31	49.58	8.06	109	24.79	2.2
P-3	30.20	32.04	49.21	8.16	113.4	24.61	2.3

En la tabla 3 se puede observar que los datos de nutrientes son bastante homogéneos, debido a la cercanía de los puntos de muestreo.

Tabla 3. Concentración de clorofila-a y nutrientes en muestras de agua de diferentes puntos en el Puerto de Acajutla. **Chl-a:** clorofila-a, **PT:** fósforo total, **NT:** nitrógeno total.

Punto	Chl-a (µg/L)	PT (mg/L)	NT (mg/L)
P-1	2.22	0.060	1.475
P-2	1.28	0.065	1.388
P-3	3.37	0.065	1.373

CONCLUSIONES

- No se detectó ocurrencia de proliferación algal nociva o Marea Roja en el puerto de Acajutla en la fecha del muestreo.
- *Prorocentrum spp*. presentó mayor concentración o abundancia de 1,980 cel/L, estas especies son potencialmente productoras de toxinas, su toxicidad no ha sido asociada a eventos de intoxicación en el país.
- Durante el monitoreo hubo vientos intensos de hasta 15 km/h, provocando mezcla vertical en columna de agua que podría desplazar especies de fitoplancton hacia capas más profundas, la abundancia superficial registrada podría estar subestimada y afectar la representatividad de la muestra.
- *Scrippsiela sp.* se registró como la segunda especie más abundante, con concentración de 660 cel/L.
- Los parámetros fisicoquímicos fueron similares en los puntos de muestreo.
- Se recomienda realizar el monitoreo de las especies tóxicas y nocivas del fitoplancton empleando embarcación en sitios más alejados de la costa.

Autorizado y editado por: Oscar Amaya Director